Abstract **ID: 98**

ATA3271: An Armored, Next-Generation Off-The-Shelf, Allogeneic, Mesothelin-CAR T **Cell Therapy for Solid Tumors**

Preclinical & Translational Sciences, Atara Biotherapeutics, Inc., Thousand Oaks, CA

BACKGROUND

Mesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovarian, non-small cell lung and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted Chimeric Antigen Receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown preliminary investigator assessed efficacy results and acceptable safety profile [Adusumilli et al. AACR 2019] and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR) demonstrating higher efficacy and persistence in animal models [Kiesgen et al. AACR 2020]. Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application.

EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, todate, have demonstrated a favorable safety profile with no evidence for T cell therapy-induced GvHD or cytokine release syndrome. Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting [Curran et al. TCT 2020]. Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.

cells were used as control.

purity of T cells

and (D) cytokine IFN-γ in ATA3271 after 4 hours in coculture with BLCLs at the E:T ratio of 1:3 was analyzed by flow cytometry.

Generation of EBV T cells expressing MSLN-1XX CAR and PD1DNR

Figure 1 T and B cell fractions are separated from an unrelated donor via leukapheresis. The CD19+ fraction i transformed with EBV, generating an EBV+ lymphoblastoid cell line (BLCL). T cells are stimulated with BLCLs prior to retroviral introduction of mesothelin (MSLN)-targeted CAR with 1XX signaling domain and PD1DNR. The mesothelin scFv is derived from human anti-MSLN antibody m912. Continued expansion of MSLN-1XX-PD1DNR CAR+ EBV T cells (ATA3271) occurs with BLCL stimulation prior to harvest and cryopreservation for later use.

Jiangyue Liu, Xianhui Chen, Jason Karlen, Alfonso Brito, Tiffany Jehng, Philippe Foubert, Janani Krishnamurthy, Yannick Bulliard, Blake T. Aftab

every 2 or 3 days at the E:T ratio of 5:1, (D) CD62L+ memory phenotype and (E) tumor lysis capabilit of ATA3271 were well preserved during the 7 rounds of tumor cell challenges.

Overall, ATA3271 shows potent antitumor activity both *in vitro* and *in vivo*, with no evidence of allo-toxicity and represents a promising approach for the treatment of MSLN-positive cancers.